Competing reaction processes on a lattice as a paradigm for catalyst deactivation.

نویسندگان

  • E Abad
  • J J Kozak
چکیده

We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N-1 partially absorbing traps (absorption probability 0<s<1). The influence of competing reaction centers on the probability of reaction at a target site (the deep trap) and the mean walk length of the random walker before localization (a measure of the reaction efficiency) are computed for different geometries. Both analytic expressions and numerical results are given for reactive processes on two-dimensional surfaces of Euler characteristic Ω=0 and Ω=2. The results obtained allow a characterization of catalyst deactivation processes on planar surfaces and on catalyst pellets where only a single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g., acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find that such deviations display a significant dependence on the topological details of the surface (for fixed values of N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis we extract results for the two limiting cases s≈1 and s≈0, corresponding respectively to weak and strong catalyst poisoning (decreasing s leads to a monotonic decrease in the efficiency of catalytic conversion). The results for the s≈0 case are relevant for the dual problem of light-energy conversion via trapping of excitations in the chlorophyll antenna network. Here, decreasing the probability of excitation trapping s at sites other than the target molecule does not result in a decrease of the efficiency as in the catalyst case, but rather in enhanced efficiency of light-energy conversion, which we characterize in terms of N and s. The one-dimensional case and its connection with a modified version of the gambler's ruin problem are discussed. Finally, generalizations of our model are described briefly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the Deactivation Model of Iron-potassium/γ-Al2O3 Catalyst in a Fixed Bed Reactor

Catalyst activity and performance are the most important factors for selecting a catalyst in different processes. The Fischer-Tropsch synthesis is a very important synthesis that extensive action has been taken place to increase the activity of its catalysts in the recent century. Deactivation of the catalysts of the process is influenced by many factors, among which coking and sintering have c...

متن کامل

Hydrocracking Lumped Kinetic Model with Catalyst Deactivation in Arak Refinery Hydrocracker Unit

A kinetic model of a fixed bed tubular reactor incorporating catalyst deactivation was developed for the ISOMAX unit of Arak refinery. The kinetic parameters for the hydrocracking reactions over the commercial catalyst were determined using initial activity plant data i.e. when the catalyst is fresh. Catalyst deactivation was then taken into account by means of deactivation function based on pl...

متن کامل

The Effect of Coking on Kinetics of HDS Reaction under Steady and Transient States

A study was made of the coking of a commercial fresh sulfide Ni-Mo/Al2O3 catalyst in a fixed-bed reactor. The catalyst was coked using different coke precursors in the gas oil under accelerated conditions at temperatures of 400 to 450°C to yield different deactivated catalysts containing 2-20 wt% C. Two cases were studied; crushed catalyst without diffusional ...

متن کامل

Toward the Development of a Robust Kinetic Model for the Cobalt Fischer-Tropsch Catalyst Lifetime Using a Novel Sigmoidal Pattern

Although catalyst deactivation rate greatly varies depending on many factors, including the catalyst structure, reactor feed composition, and operating conditions; it is usually inevitable. Since catalyst deactivation modeling has so far been poorly addressed in the literature, in the present study, nine experimental sets of cobalt based Fischer-Tropsch catalysts activity-time data were conside...

متن کامل

Reaction dynamics during the testing of polymerization catalyst

The olefins polymerization process in a slurry reactor is discussed. The reaction rate dynamics was analyzed and the contributions of feed flow, gas-liquid mass transfer, polymerization reaction, and catalyst deactivation were estimated. The propylene solubility in a solvent mixture “heptane” was calculated using Soave-Redlich-Kwong equation of state. These data were then approximated by Henry-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2015